AWARD WINNER – ST JAMES ESTATE

The Fini Group’s St James Estate residential development project in Perth has won the prestigious international Millenium FIABCI Prix D’Excellence Award – Residential Category, at a glittering ceremony held at the Royal Festival Hall in London, from over 303 entries around the world.

FIABCI (the International Real Estate Federation), represents some 150 property associations from over 55 countries and is responsible for real estate advice to the United Nations. FIABCI’s International Awards are considered to be the Academy Awards for the property industry. Previous award winners have been the Trump International Hotel, New York and Euro Disney in Paris.

The massive St James project, located in the heart of bustling Northbridge, features some 20 residential buildings including the Hotel of Serviced Apartments, which was a total precast structure. Each of the buildings has its own unique architectural identity and finishes brought together to form a cosmopolitan village.

Initial planning for the project, comprising of a diversity of terraces, townhouses and apartments, specified brick walling and in-situ concrete flooring as the major building materials. However, a reassessment of the project looked towards precast concrete to overcome many of the problems associated with developing inner city sites. Subsequently, precast walls and floors were incorporated in many of the buildings at the design stage after consultation with the precaster, Delta Corporation. Overall, precast components extended to basement retaining wall panels, party walls, lift shaft walls, staircase flights and hollowcore floor panels.

Moreover, the use of precast has contributed to the diversity of colours, features and detail on each of the different buildings, adding to the character of the development.

According to Project Manager, Jim Ashenden, this was the first time the Fini Group used precast concrete as a system for a major project and they have been impressed by the benefits it offers. Jim says ‘Using precast materials has vastly increased the speed of construction and has minimised the requirements for exterior scaffolding. Aside from its bottom-line cost effectiveness, it has also allowed a greater ease of architectural detailing.’

The Fini Group’s design and construction team for the St James Estate included architects, Jones Coulter Young Pty Ltd and engineers, Sinclair Knight Merz Pty Ltd.
Panel connections must resist the self-weight of the panel in combination with the external forces imposed on it. The primary external forces arise from wind and earthquake. Induced forces may also arise from movement of the building frame and panel creep or shrinkage. Temperature variation will also cause panels to bow and move axially, giving rise to restraint forces. All these forces can be calculated with reasonable accuracy and resisted or dispersed by simple detailing. Generally bowing and axial movement nearly compensate for each other and the small dimensional change is absorbed by the fixing.

The panel should be attached to the building frame so as to reduce the effects of any induced forces. This means that the panel should be supported in a statically determinate manner. Thus there should be no more than two supports and two restraints. Supports and restraints should be as far apart vertically as the panel dimensions and structure permit; small lever arms allow out-of-plane rotation.

Connections should be chosen so that the loads are transferred through the connections as simply as possible with minimal eccentricities. The design of the component fixing must allow for the forces and moments in the detailed design Figure 2.

Connections should allow economical fabrication of the precast elements. The hardware should not interfere with concrete placement, cause finishing problems nor make it difficult to provide the specified cover to reinforcement.

Connection details should be standardised as much as possible. This results in economy, speed and simplicity during production and erection, and also reduces the chance of error.

Connections should be detailed so that hoisting equipment can be quickly released. It may be necessary to provide temporary connections that are released after final adjustments are made.

Figure 2 Design principles for cladding-panel connections

Figure 3 Eccentricity of gravity forces

The entire weight of the unit is carried at the one level. The restraint fixings should preferably be accessible from this level for ease of erection. The panel fixings should be carried in direct bearing if possible. The preferred fixing system to a building frame consists of two concrete haunches and two steel restraint angles. This gives a robust but flexible attachment of the panel to the structure. Dowels in the haunches resist lateral loads. Clearance holes and packing at the restraint fixings absorb building tolerances and isolate the panel from differential movement of the structure. Other support methods substitute steel fabrications for the haunch and clips for the restraint angle.

Units should be provided with fixings as shown in Figure 1. The arrows show the freedom to movement that can be provided at each of the fixings in the plane of the panel. Each of the fixings must provide resistance to wind and earthquake forces perpendicular to the plane of the panel. These may augment gravity forces.

Connections should be chosen so that the loads are transferred through the connections as simply as possible with minimal eccentricities. The design of the component fixing must allow for the forces and moments in the detailed design Figure 2.

Figure 1 Typical panel fixings

Figure 3 Eccentricity of gravity forces

- Transfer dead load directly to the structure through bearing
- Provide only two bearing points per panel
- Panel should be bottom-supported (if possible)
- Panel may also be top-supported
- A bolted connection (cleat) is suitable for lateral restraint
- Avoid carrying dead load on bolts in shear
- Provide bearing at one level only, per panel
- Alternatively, panel may be middle-supported
- Bearing support to be tied against lateral forces
- Provide vertical, horizontal and lateral adjustments to all connections

Table 1 Panel Connections

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transfer dead load directly to the structure through bearing</td>
</tr>
<tr>
<td>2</td>
<td>Avoid carrying dead load on bolts in shear</td>
</tr>
<tr>
<td>3</td>
<td>Provide only two bearing points per panel</td>
</tr>
<tr>
<td>4</td>
<td>Provide bearing at one level only, per panel</td>
</tr>
<tr>
<td>5</td>
<td>Panel should be bottom-supported (if possible)</td>
</tr>
<tr>
<td>6</td>
<td>Alternatively, panel may be middle-supported</td>
</tr>
<tr>
<td>7</td>
<td>Panel may also be top-supported</td>
</tr>
<tr>
<td>8</td>
<td>Bearing support to be tied against lateral forces</td>
</tr>
<tr>
<td>9</td>
<td>A bolted connection (cleat) is suitable for lateral restraint</td>
</tr>
<tr>
<td>10</td>
<td>Provide vertical, horizontal and lateral adjustments to all connections</td>
</tr>
</tbody>
</table>
horizontal, and rotational forces.

Some form of variable-thickness packing material is necessary to absorb tolerances (e.g., mortar or shims). High bearing-intensities may be developed at edges of a bearing surface due to deflection and twisting of the supported member, as well as mismatching of the bearing surfaces. This can cause cracking and spalling unless they are taken into account or avoided in the design of the connection. Chamfered or protected edges will alleviate this problem.

- **Haunches** These can be either concrete or steel. A typical concrete corbel or haunch cast on a cladding unit is shown in Figure 4. It can also be fabricated from a rolled steel section such as an angle or channel, a plate on edge, or for light-weight units (up to 3t) a plate on flat.

- **Angle seat bearing connections** Other items used to support cladding units are steel angles. Depending on the load to be supported, the angle may need to be stiffened. Note that confinement reinforcement is needed around the embedded ferrules to add ductility to the connection.

Restraint connections These stabilise the panel against out-of-balance gravity loads and resist horizontal windloads. For ease of erection they should preferably be accessible from the same lever as the support fixings. The simplest is an angle as in Figures 5. Panel-to-panel restraint connections can also be used in the horizontal direction to hold adjacent panels together.

GENERAL ARRANGEMENT

- Corbel may be local or continuous
- 75 Ø grouted core hole (horizontal and lateral adjustment)
- Bars welded to each other and to cross-bar or continuous bar
- Packers (vertical adjustment) and non-shrink grout pad under corbel
- Dowel cast in floor inside beam reinforcement or grouted into 60 Ø cored hole
- 20 Ø bolt through hole slotted parallel to panel (horizontal adjustment) into ferrule located inside beam reinforcement
- Fire-rated protection if required
- 20 Ø bolt through vertically-slotted hole (vertical adjustment) into ferrule cast in panel
- Packer plates (lateral adjustment)

Figure 4 Concrete or steel corbel bearing connections

Figure 5 Restraint connections

When standard clips are used in steel-selected buildings, clips are to be welded to restraint beam to secure panels in the event of a fire.

Figure 6 Hollowcore panel connections
Hollowcore panel connections
Hollowcore panels are usually non-loadbearing cladding panels. They may be single-storey panels spanning vertically or horizontally and are fixed to the building frame. The frame can be of steel or concrete. Details of typical fixings at the top and bottom of the panels are shown in Figure 6.

More detailed information on the subject of Precast Connections and Fixings is covered in the PRECAST CONCRETE HANDBOOK to be published by the NPCAA and CIA early next year.

WESTIN HOTEL Project, City Square

Melbourne's famous Swanston St has taken on a new look with the redevelopment of the City Square site to accommodate the 5-star Westin Hotel supported by attractive landscaping with gardens and paving.

Fifty percent of the redevelopment consists of 13 levels of hotel and apartment space (262 rooms and 32 units, respectively), above 3 levels of underground car park designed to accommodate some 550 vehicles. The other 50% of the site adjoining Swanston St has been landscaped with water features and planted areas.

For the facade cladding from level 2 to 7, acid washed precast load-bearing panels were chosen. These were supplied by South Australian manufacturer, Constress.

Key features of the precast component of the project:

CONCRETE PROPERTIES

Surface Finish The architect required a sandstone appearance to complement adjacent heritage buildings. Fortunately, South Australian aggregate suppliers were able to source a wide range of coloured sands which give a more natural appearance than oxides with this type of finish. From an extensive range submitted, the architect chose a sample containing a blend of off-white cement together with 75% yellow and 25% red sand.

Mix Design The mix provided a concrete strength of 50 Mpa sufficient to satisfy both the load-bearing design and to ensure colour consistency throughout the project. While some plasticisers tend to noticeably darken the concrete, the chosen type was a milky colour, which was ideal for blending with the off-white cement in terms of strength and colour consistency. In terms of the mixing process, all concrete was batched in a computerised pan mixer with electronic slump control, which automatically compensated for moisture content in the aggregates.

MOULD DESIGN AND MANUFACTURE

The simulated sandstone appearance demanded a type of finish that exhibited minimum surface irregularities which therefore required precision mould manufacture. Apart from design for sufficient rigidity, extreme care was taken to conceal lining joints under rebates and false groove formwork on the base of the mould. A small chamfer was designed to incorporate a rubber seal to avoid slurry leakage.

Considerable cost saving was effected by casting the hundreds of sills into the main panels even though the sills protruded past the casting surface. This was achieved by casting the panel over the edge of the mould.

As the job detailing required an inordinately large number of small panels, production efficiency was maintained by setting up 3 or 4 pieces in the one mould table, thus allowing all to be cast at the same time.

Precast panels propped, aligned and pre-grouted prior to erection of formwork for next level.

Precast panels propped, aligned and pre-grouted prior to erection of formwork for next level.

WESTIN HOTEL Project, City Square

Western elevation of Westin Hotel facing Swanston St, Melbourne
After casting and demoulding, the panels were acid washed face up with a slight fall to allow smooth brooming of the face without ponding.

PROGRAMME
With the large number of panels involved 1216, (approximately 100 per floor), careful planning was required to ensure that the builders met their tight construction schedule.

The precaster’s computerised manufacturing programme chose the most efficient casting sequence and gave the casting date of every panel on the project. The computer then matched this with the builder’s floor cycles and identified any panel which might be late. A decision could then be made either to interchange late panels with those ahead of programme or to introduce additional moulds to speed up the casting sequence.

As the project progressed, the builder’s actual delivery dates were inserted in the programme and the priority of the panels reassessed. Although the builder accelerated construction from its original programme, all panels were delivered ‘just in time’ as a result of the close cooperation with the precaster.

The design and construction team responsible for the project was: Builder Grocon Pty Ltd Project Management Staged Developments Pty Ltd Architect City Square Hotel Architects Engineer Bonacci Winward Precaster Constress Pty Ltd

For years there has been increasing demand for structural precast elements. A long time ago precasters found that the skills acquired in non-structural/architectural units could be practically and profitably put to use in their heavy-duty counterparts.

Periods of economic growth, especially the much-maligned mid-1980’s, coincided with the increased relevance of structural precast. The advantages of speed and quality of construction, made possible due to off-site factory fabrication, along with a ready made skill base in this very familiar material made structural precast more and more attractive to contractors.

Whilst hardly the most glamorous of projects, the four new sewerage clarifier tanks for Melbourne Water at the Werribee Treatment Plant in Melbourne’s outer West, currently being built by John Holland, are an excellent example of structural precasting used to its best advantage. Part of what is officially known as the Environmental Improvement Project in Lagoon 55 East, it is an example of Melbourne Water’s commitment to the continued research into ecologically sound methods of treating the ever-increasing supply of sewerage.

The key to making any large scale precast job a success is repetition. The designers of the clarifier tanks, Sinclair Knight Mertz, have rationalised the elements to eight. With nearly 300 units to produce across all types within a tight schedule it is the near elimination of non-productive moulds at the end of a day’s work that is

The indispensable guide to GRC for architects, designers and engineers

The National Precast Concrete Association Australia has released A Recommended Practice—Design, Manufacture and Installation of Glass Reinforced Concrete [GRC].

The aim of the manual is to set down requirements fundamental to the design and manufacture of GRC necessary to obtain acceptable levels of safety, serviceability and durability for this building product.

PLEASE SEND ME copy(s) of A Recommended Practice – Design, Manufacture and Installation of Glass Reinforced Concrete [GRC]. Payment of $17.00 per copy (including GST and postage within Australia) accompanies this order.

NAME:
COMPANY:
ADDRESS:

Return your order form to NPCAA at 8–10 Palmer Street North Parramatta NSW 2151 Tel (02) 9680 8855 Fax (02) 9680 8854
Construction of the Olympic Rail Loop with TechSpan® Arch Tunnels in Sydney

Reinforced Earth’s product range includes the following:

TechSpan® – A three pinned reinforced concrete arch system that is designed and supplied to meet the specific needs of the project. TechSpan arches have been supplied to a wide range of projects including rail tunnels, road tunnels, water crossings, and reclain tunnels for mines, amongst others.

TechCulvert® – a single piece, two pinned arch in smaller spans to the TechSpan, most practically used in culvert applications.

TerraClass® – The familiar cruciform shaped concrete facing panels used by the Reinforced Earth Company for many years. These popular panels can be supplied with many attractive finishes.

Terraset® – The larger rectangular panels offered by Reinforced Earth for four years now. Also available in a range of finishes.

The ‘Terra’ range of products represent the traditional Reinforced Earth technology. These products are used to construct retaining walls that may act as bridge abutments, seawalls, dump structures, containment structures, headwalls and other applications.

MEMBER Profile

REINFORCED EARTH PTY LTD is a specialist engineering design and supply company with more than 25 years experience in the civil engineering industry in Australia.

Since introduction to Australia in 1974, Reinforced Earth technology has been utilised in more than 600 projects, providing specialised engineering systems to a wide variety of clients in Australia, New Zealand and other areas of South East Asia and the Pacific. They aim to achieve successful outcomes for their clients and business partners through skilful implementation of specialised services which will assist clients by providing innovative yet practical and cost effective solutions for projects.

Specifically, Reinforced Earth Pty Ltd is the market leader in the design and supply of mechanically stabilised soil retaining walls, particularly with precast concrete facing panels. They also offer sophisticated concrete arch structures where experienced and professional design services tailor systems to meet the needs of the project. Detailed design drawings are produced and submitted to the client together with manufacturing and construction specifications. They then manufacture the specialised materials and supply to the client’s project site. Extensive onsite technical back-up is provided to assist the client in installing the Reinforced Earth structure correctly and cost effectively to achieve the best result.